¹H(⁵⁴Ca,pnγ) **2019Ch43**

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 28-May-2021

2019Ch43: ≈200 MeV/nucleon ⁵⁴Ca beam produced in fragmentation of 345 MeV/nucleon ⁷⁰Zn beam at RIBF-RIKEN facility. Target was 151-mm thick liquid hydrogen of MINOS device. Fragments were separated using BigRIPS separator, and reaction residues were analyzed using the SAMURAI spectrometer. Outgoing protons were detected using a 300-mm long cylindrical time projection chamber (TPC), and outgoing neutrons using two large-acceptance plastic scintillator arrays, NeuLAND demonstrator and NEBULA, placed at zero degree. The γ rays were detected using DALI-2 array of 226 NaI(Tl) detectors. Measured Εγ, Ιγ, pγ-coin, nγ-coin, and γγ-coin. Deduced levels, J, π, exclusive and inclusive cross sections, L-transfers from parallel and transverse momentum distributions compared with distorted-wave impulse approximation (DWIA), and spectroscopic factors. Comparison with shell-model calculations using the effective GXPF1Bs interaction, and with ab initio calculations.

Quasifree one-neutron knockout reaction.

⁵³Ca Levels

E(level)	$J^{\pi \dagger}$	L	C^2S^{\ddagger}	Comments
0	$(1/2^{-})$	(1)	2.2 4	Exclusive σ =15.9 mb 17.
				Inclusive σ =36.0 mb 12.
				$C^2S=2.2 \ 2(stat) \ 3(theory).$
				Configuration= $\nu p_{1/2}$.
1738 <i>17</i>	$(5/2^{-})$	(3)	0.23 8	Exclusive σ =1.0 mb 3.
				$C^2S=0.23$ 7(stat) 3(theory).
				Configuration= $vf_{5/2}$.
2220 13	$(3/2^{-})$	(1)	3.1 5	Exclusive σ =19.1 mb $I2$.
				$C^2S=3.1 \ 2(stat) \ 5(theory).$
				Configuration= $\nu p_{3/2}$.

[†] From L-transfers, deduced from experimental parallel momentum distributions and compared with distorted-wave impulse approximation (DWIA) calculations.

$$\gamma$$
(53Ca)

The 1738y and 2220y were not observed in coincidence (2019Ch43).

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
1738 <i>17</i>	1738	$(5/2^{-})$	0	$(1/2^{-})$
2220 13	2220	$(3/2^{-})$	0	$(1/2^{-})$

 $[\]dot{\bar{}}$ Ratio of experimental and theoretical single-particle cross sections, the latter calculated in the distorted-wave impulse approximation (DWIA), averaged for the thick target. The two uncertainties, statistical and the one from theoretical σ (single-particle), listed in comments, were combined in quadrature by the evaluator.

¹H(⁵⁴Ca,pnγ) 2019Ch43

Level Scheme

